This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | regsep2 | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | regtop | ⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ Top ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝐽 ∈ Top ) |
| 4 | elssuni | ⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽 ) | |
| 5 | 4 1 | sseqtrrdi | ⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ⊆ 𝑋 ) |
| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝑦 ⊆ 𝑋 ) |
| 7 | 1 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | 1 | cldopn | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∈ 𝐽 ) |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∈ 𝐽 ) |
| 11 | simprrr | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) | |
| 12 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑋 ) |
| 13 | 3 6 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑋 ) |
| 14 | simplr1 | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 15 | 1 | cldss | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 ⊆ 𝑋 ) |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝐶 ⊆ 𝑋 ) |
| 17 | ssconb | ⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ 𝑋 ∧ 𝐶 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ↔ 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ↔ 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) ) |
| 19 | 11 18 | mpbid | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 20 | simprrl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝐴 ∈ 𝑦 ) | |
| 21 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋 ) → 𝑦 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 22 | 3 6 21 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → 𝑦 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) |
| 23 | sslin | ⊢ ( 𝑦 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) → ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) ⊆ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) ⊆ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) |
| 25 | disjdifr | ⊢ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) = ∅ | |
| 26 | sseq0 | ⊢ ( ( ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) ⊆ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∧ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) = ∅ ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) = ∅ ) |
| 28 | sseq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) → ( 𝐶 ⊆ 𝑥 ↔ 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ) ) | |
| 29 | ineq1 | ⊢ ( 𝑥 = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) ) | |
| 30 | 29 | eqeq1d | ⊢ ( 𝑥 = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) = ∅ ) ) |
| 31 | 28 30 | 3anbi13d | ⊢ ( 𝑥 = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) → ( ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ∧ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) = ∅ ) ) ) |
| 32 | 31 | rspcev | ⊢ ( ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∈ 𝐽 ∧ ( 𝐶 ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∧ 𝐴 ∈ 𝑦 ∧ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ) ∩ 𝑦 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 33 | 10 19 20 27 32 | syl13anc | ⊢ ( ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 34 | simpl | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐽 ∈ Reg ) | |
| 35 | simpr1 | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 36 | 1 | cldopn | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐶 ) ∈ 𝐽 ) |
| 37 | 35 36 | syl | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ( 𝑋 ∖ 𝐶 ) ∈ 𝐽 ) |
| 38 | simpr2 | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐴 ∈ 𝑋 ) | |
| 39 | simpr3 | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ¬ 𝐴 ∈ 𝐶 ) | |
| 40 | 38 39 | eldifd | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐴 ∈ ( 𝑋 ∖ 𝐶 ) ) |
| 41 | regsep | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝑋 ∖ 𝐶 ) ∈ 𝐽 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝐶 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) | |
| 42 | 34 37 40 41 | syl3anc | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ⊆ ( 𝑋 ∖ 𝐶 ) ) ) |
| 43 | 33 42 | reximddv | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ∃ 𝑦 ∈ 𝐽 ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 44 | rexcom | ⊢ ( ∃ 𝑦 ∈ 𝐽 ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 45 | 43 44 | sylib | ⊢ ( ( 𝐽 ∈ Reg ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |