This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refun0 | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | eqid | ⊢ ∪ 𝐵 = ∪ 𝐵 | |
| 3 | 1 2 | refbas | ⊢ ( 𝐴 Ref 𝐵 → ∪ 𝐵 = ∪ 𝐴 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∪ 𝐵 = ∪ 𝐴 ) |
| 5 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { ∅ } ) ) | |
| 6 | refssex | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) | |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 8 | 0ss | ⊢ ∅ ⊆ 𝑦 | |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∅ ⊆ 𝑦 ) |
| 10 | 9 | reximdva0 | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) |
| 12 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 13 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦 ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝑥 ∈ { ∅ } → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∅ ⊆ 𝑦 ) ) |
| 17 | 11 16 | mpbird | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ { ∅ } ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 18 | 7 17 | jaodan | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { ∅ } ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 19 | 5 18 | sylan2b | ⊢ ( ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) |
| 21 | refrel | ⊢ Rel Ref | |
| 22 | 21 | brrelex1i | ⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
| 23 | p0ex | ⊢ { ∅ } ∈ V | |
| 24 | unexg | ⊢ ( ( 𝐴 ∈ V ∧ { ∅ } ∈ V ) → ( 𝐴 ∪ { ∅ } ) ∈ V ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( 𝐴 Ref 𝐵 → ( 𝐴 ∪ { ∅ } ) ∈ V ) |
| 26 | uniun | ⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∪ { ∅ } ) | |
| 27 | 0ex | ⊢ ∅ ∈ V | |
| 28 | 27 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 29 | 28 | uneq2i | ⊢ ( ∪ 𝐴 ∪ ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∅ ) |
| 30 | un0 | ⊢ ( ∪ 𝐴 ∪ ∅ ) = ∪ 𝐴 | |
| 31 | 26 29 30 | 3eqtrri | ⊢ ∪ 𝐴 = ∪ ( 𝐴 ∪ { ∅ } ) |
| 32 | 31 2 | isref | ⊢ ( ( 𝐴 ∪ { ∅ } ) ∈ V → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 33 | 25 32 | syl | ⊢ ( 𝐴 Ref 𝐵 → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 35 | 4 20 34 | mpbir2and | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ∪ { ∅ } ) Ref 𝐵 ) |