This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refssex | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑆 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel | ⊢ Rel Ref | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
| 3 | eqid | ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 4 | eqid | ⊢ ∪ 𝐵 = ∪ 𝐵 | |
| 5 | 3 4 | isref | ⊢ ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( ∪ 𝐵 = ∪ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 6 | 5 | simplbda | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) |
| 7 | 2 6 | mpancom | ⊢ ( 𝐴 Ref 𝐵 → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ) |
| 8 | sseq1 | ⊢ ( 𝑦 = 𝑆 → ( 𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥 ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝑦 = 𝑆 → ( ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
| 10 | 9 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → ( 𝑆 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝐴 Ref 𝐵 → ( 𝑆 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 Ref 𝐵 ∧ 𝑆 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥 ) |