This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refbas.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| refbas.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | refbas | ⊢ ( 𝐴 Ref 𝐵 → 𝑌 = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refbas.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | refbas.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | refrel | ⊢ Rel Ref | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 Ref 𝐵 → 𝐴 ∈ V ) |
| 5 | 1 2 | isref | ⊢ ( 𝐴 ∈ V → ( 𝐴 Ref 𝐵 ↔ ( 𝑌 = 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) ) |
| 6 | 5 | simprbda | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 Ref 𝐵 ) → 𝑌 = 𝑋 ) |
| 7 | 4 6 | mpancom | ⊢ ( 𝐴 Ref 𝐵 → 𝑌 = 𝑋 ) |