This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 ) can use the A. x e. dom r x r x version for their reflexive part, not just the A. x e. dom r A. y e. ran r ( x = y -> x r y ) version of dfrefrels3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 22-Jul-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrels3 | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } | |
| 2 | idrefALT | ⊢ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ) | |
| 3 | cnvsym | ⊢ ( ◡ 𝑟 ⊆ 𝑟 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ↔ ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ) ) |
| 5 | 1 4 | rabbieq | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ) } |