This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrel2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 23-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrel2 | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel2 | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 2 | dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ∧ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) ) |
| 4 | anandi3r | ⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ↔ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ∧ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) ) | |
| 5 | 3anan32 | ⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ↔ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) | |
| 6 | 3 4 5 | 3bitr2i | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) |
| 7 | symrefref2 | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) | |
| 8 | 7 | pm5.32ri | ⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) |
| 9 | 8 | anbi1i | ⊢ ( ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) |
| 10 | 6 9 | bitri | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ Rel 𝑅 ) ) |