This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of idref not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012) (Proof shortened by Mario Carneiro, 3-Nov-2015) (Revised by NM, 30-Mar-2016) (Proof shortened by BJ, 28-Aug-2022) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idrefALT | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑦 ( 𝑦 ∈ ( I ↾ 𝐴 ) → 𝑦 ∈ 𝑅 ) ) | |
| 2 | elrid | ⊢ ( 𝑦 ∈ ( I ↾ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 〈 𝑥 , 𝑥 〉 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑦 ∈ ( I ↾ 𝐴 ) → 𝑦 ∈ 𝑅 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑦 ∈ 𝑅 ) ) |
| 4 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑦 ∈ 𝑅 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑦 ∈ 𝑅 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑦 = 〈 𝑥 , 𝑥 〉 → ( 𝑦 ∈ 𝑅 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) ) | |
| 6 | df-br | ⊢ ( 𝑥 𝑅 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ 𝑅 ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝑦 = 〈 𝑥 , 𝑥 〉 → ( 𝑦 ∈ 𝑅 ↔ 𝑥 𝑅 𝑥 ) ) |
| 8 | 7 | pm5.74i | ⊢ ( ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑦 ∈ 𝑅 ) ↔ ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ) |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑦 ∈ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ) |
| 10 | 3 4 9 | 3bitr2i | ⊢ ( ( 𝑦 ∈ ( I ↾ 𝐴 ) → 𝑦 ∈ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( I ↾ 𝐴 ) → 𝑦 ∈ 𝑅 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ) |
| 12 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ) | |
| 13 | opex | ⊢ 〈 𝑥 , 𝑥 〉 ∈ V | |
| 14 | biidd | ⊢ ( 𝑦 = 〈 𝑥 , 𝑥 〉 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 15 | 13 14 | ceqsalv | ⊢ ( ∀ 𝑦 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) |
| 16 | 15 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 〈 𝑥 , 𝑥 〉 → 𝑥 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| 17 | 11 12 16 | 3bitr2i | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( I ↾ 𝐴 ) → 𝑦 ∈ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |
| 18 | 1 17 | bitri | ⊢ ( ( I ↾ 𝐴 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑥 ) |