This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom r X. ran r ) ) C r version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 | ⊢ RefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } | |
| 2 | dfsymrels2 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } | |
| 3 | 1 2 | ineq12i | ⊢ ( RefRels ∩ SymRels ) = ( { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } ∩ { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } ) |
| 4 | inrab | ⊢ ( { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } ∩ { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } ) = { 𝑟 ∈ Rels ∣ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } | |
| 5 | symrefref2 | ⊢ ( ◡ 𝑟 ⊆ 𝑟 → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ) ) | |
| 6 | 5 | pm5.32ri | ⊢ ( ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ↔ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ) |
| 7 | 6 | rabbii | ⊢ { 𝑟 ∈ Rels ∣ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |
| 8 | 3 4 7 | 3eqtri | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |