This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 ) can use the A. x e. dom r x r x version for their reflexive part, not just the A. x e. dom r A. y e. ran r ( x = y -> x r y ) version of dfrefrels3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 22-Jul-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrels3 | |- ( RefRels i^i SymRels ) = { r e. Rels | ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 | |- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
|
| 2 | idrefALT | |- ( ( _I |` dom r ) C_ r <-> A. x e. dom r x r x ) |
|
| 3 | cnvsym | |- ( `' r C_ r <-> A. x A. y ( x r y -> y r x ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) <-> ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) ) ) |
| 5 | 1 4 | rabbieq | |- ( RefRels i^i SymRels ) = { r e. Rels | ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) ) } |