This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in Schechter p. 51. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 2 | ssrel3 | ⊢ ( Rel ◡ 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) |
| 4 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑧 ◡ 𝑅 𝑥 ) ) | |
| 5 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑧 ◡ 𝑅 𝑥 → 𝑧 𝑅 𝑥 ) ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑦 ◡ 𝑅 𝑧 ) ) | |
| 8 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑦 ◡ 𝑅 𝑧 → 𝑦 𝑅 𝑧 ) ) ) |
| 10 | 6 9 | alcomw | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 11 12 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 14 | 13 | imbi1i | ⊢ ( ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 15 | 14 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 ◡ 𝑅 𝑥 → 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 16 | 3 10 15 | 3bitri | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |