This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrels2 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symrels | ⊢ SymRels = ( Syms ∩ Rels ) | |
| 2 | df-syms | ⊢ Syms = { 𝑟 ∣ ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } | |
| 3 | inex1g | ⊢ ( 𝑟 ∈ V → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V ) | |
| 4 | 3 | elv | ⊢ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V |
| 5 | brssr | ⊢ ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V → ( ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ) |
| 7 | elrels6 | ⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) ) | |
| 8 | 7 | elv | ⊢ ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) |
| 9 | 8 | biimpi | ⊢ ( 𝑟 ∈ Rels → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) |
| 10 | 9 | cnveqd | ⊢ ( 𝑟 ∈ Rels → ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = ◡ 𝑟 ) |
| 11 | 10 9 | sseq12d | ⊢ ( 𝑟 ∈ Rels → ( ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ◡ 𝑟 ⊆ 𝑟 ) ) |
| 12 | 6 11 | bitrid | ⊢ ( 𝑟 ∈ Rels → ( ◡ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ◡ 𝑟 ⊆ 𝑟 ) ) |
| 13 | 1 2 12 | abeqinbi | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } |