This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom r X. ran r ) ) C r version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrels2 | |- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels2 | |- RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } |
|
| 2 | dfsymrels2 | |- SymRels = { r e. Rels | `' r C_ r } |
|
| 3 | 1 2 | ineq12i | |- ( RefRels i^i SymRels ) = ( { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } i^i { r e. Rels | `' r C_ r } ) |
| 4 | inrab | |- ( { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } i^i { r e. Rels | `' r C_ r } ) = { r e. Rels | ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) } |
|
| 5 | symrefref2 | |- ( `' r C_ r -> ( ( _I i^i ( dom r X. ran r ) ) C_ r <-> ( _I |` dom r ) C_ r ) ) |
|
| 6 | 5 | pm5.32ri | |- ( ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) <-> ( ( _I |` dom r ) C_ r /\ `' r C_ r ) ) |
| 7 | 6 | rabbii | |- { r e. Rels | ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) } = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
| 8 | 3 4 7 | 3eqtri | |- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |