This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeqvrels2 | ⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrels | ⊢ EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels ) | |
| 2 | refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } | |
| 3 | dftrrels2 | ⊢ TrRels = { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } | |
| 4 | 2 3 | ineq12i | ⊢ ( ( RefRels ∩ SymRels ) ∩ TrRels ) = ( { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } ∩ { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } ) |
| 5 | inrab | ⊢ ( { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } ∩ { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } ) = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } | |
| 6 | 1 4 5 | 3eqtri | ⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
| 7 | df-3an | ⊢ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ) | |
| 8 | 7 | rabbii | ⊢ { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
| 9 | 6 8 | eqtr4i | ⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |