This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | redvr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) = ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
| 2 | 1 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 4 | 3simpc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) | |
| 5 | 1 | simpri | ⊢ ℝfld ∈ DivRing |
| 6 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 7 | eqid | ⊢ ( Unit ‘ ℝfld ) = ( Unit ‘ ℝfld ) | |
| 8 | re0g | ⊢ 0 = ( 0g ‘ ℝfld ) | |
| 9 | 6 7 8 | drngunit | ⊢ ( ℝfld ∈ DivRing → ( 𝐵 ∈ ( Unit ‘ ℝfld ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) |
| 10 | 5 9 | ax-mp | ⊢ ( 𝐵 ∈ ( Unit ‘ ℝfld ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 11 | 4 10 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ( Unit ‘ ℝfld ) ) |
| 12 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 13 | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) | |
| 14 | eqid | ⊢ ( /r ‘ ℝfld ) = ( /r ‘ ℝfld ) | |
| 15 | 12 13 7 14 | subrgdv | ⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ( Unit ‘ ℝfld ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) ) |
| 16 | 2 3 11 15 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) ) |
| 17 | 16 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) = ( 𝐴 / 𝐵 ) ) |