This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | redvr | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A ( /r ` RRfld ) B ) = ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 2 | 1 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 3 | simp1 | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> A e. RR ) |
|
| 4 | 3simpc | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( B e. RR /\ B =/= 0 ) ) |
|
| 5 | 1 | simpri | |- RRfld e. DivRing |
| 6 | rebase | |- RR = ( Base ` RRfld ) |
|
| 7 | eqid | |- ( Unit ` RRfld ) = ( Unit ` RRfld ) |
|
| 8 | re0g | |- 0 = ( 0g ` RRfld ) |
|
| 9 | 6 7 8 | drngunit | |- ( RRfld e. DivRing -> ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) ) ) |
| 10 | 5 9 | ax-mp | |- ( B e. ( Unit ` RRfld ) <-> ( B e. RR /\ B =/= 0 ) ) |
| 11 | 4 10 | sylibr | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> B e. ( Unit ` RRfld ) ) |
| 12 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 13 | cnflddiv | |- / = ( /r ` CCfld ) |
|
| 14 | eqid | |- ( /r ` RRfld ) = ( /r ` RRfld ) |
|
| 15 | 12 13 7 14 | subrgdv | |- ( ( RR e. ( SubRing ` CCfld ) /\ A e. RR /\ B e. ( Unit ` RRfld ) ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) ) |
| 16 | 2 3 11 15 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) = ( A ( /r ` RRfld ) B ) ) |
| 17 | 16 | eqcomd | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A ( /r ` RRfld ) B ) = ( A / B ) ) |