This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qcvs.q | ⊢ 𝑄 = ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) | |
| Assertion | qcvs | ⊢ 𝑄 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcvs.q | ⊢ 𝑄 = ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) | |
| 2 | qsubdrg | ⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) | |
| 3 | drngring | ⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) ∈ Ring ) | |
| 4 | 3 | adantl | ⊢ ( ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) → ( ℂfld ↾s ℚ ) ∈ Ring ) |
| 5 | 2 4 | ax-mp | ⊢ ( ℂfld ↾s ℚ ) ∈ Ring |
| 6 | rlmlmod | ⊢ ( ( ℂfld ↾s ℚ ) ∈ Ring → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod |
| 8 | 2 | simpri | ⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 9 | rlmsca | ⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) ) | |
| 10 | 9 | eqcomd | ⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) |
| 12 | 2 | simpli | ⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 13 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) | |
| 14 | 13 | isclmi | ⊢ ( ( ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod ) |
| 15 | 7 11 12 14 | mp3an | ⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod |
| 16 | rlmlvec | ⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec ) | |
| 17 | 8 16 | ax-mp | ⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec |
| 18 | 15 17 | elini | ⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ( ℂMod ∩ LVec ) |
| 19 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 20 | 18 1 19 | 3eltr4i | ⊢ 𝑄 ∈ ℂVec |