This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmlvec | ⊢ ( 𝑅 ∈ DivRing → ( ringLMod ‘ 𝑅 ) ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 2 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑅 ∈ DivRing → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 4 | rlmsca | ⊢ ( 𝑅 ∈ DivRing → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 5 | id | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ DivRing ) | |
| 6 | 4 5 | eqeltrrd | ⊢ ( 𝑅 ∈ DivRing → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ∈ DivRing ) |
| 7 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | 7 | islvec | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LVec ↔ ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ∈ DivRing ) ) |
| 9 | 3 6 8 | sylanbrc | ⊢ ( 𝑅 ∈ DivRing → ( ringLMod ‘ 𝑅 ) ∈ LVec ) |