This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 2 | 1 | recld2 | |- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 3 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 4 | 3 | cncmet | |- ( abs o. - ) e. ( CMet ` CC ) |
| 5 | 1 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 6 | 5 | cmetss | |- ( ( abs o. - ) e. ( CMet ` CC ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
| 7 | 4 6 | ax-mp | |- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 8 | 2 7 | mpbir | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( CMet ` RR ) |