This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| prodgt0.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | prodgt0i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | prodgt0.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | prodgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐵 ) | |
| 4 | 1 2 3 | mpanl12 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐵 ) |