This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator when I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgprc | ⊢ ( ¬ 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = rec ( 𝐹 , ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑧 = ∅ → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = ∅ → ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ ∅ ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑧 = ∅ → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( rec ( 𝐹 , ∅ ) ‘ ∅ ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑧 = ∅ → ( ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ↔ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( rec ( 𝐹 , ∅ ) ‘ ∅ ) ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑧 = 𝑦 → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑧 = 𝑦 → ( ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ↔ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑧 = suc 𝑦 → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑧 = suc 𝑦 → ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑧 = suc 𝑦 → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑧 = suc 𝑦 → ( ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ↔ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑧 = 𝑥 → ( ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ↔ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) ) ) |
| 17 | rdgprc0 | ⊢ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ∅ ) | |
| 18 | 0ex | ⊢ ∅ ∈ V | |
| 19 | 18 | rdg0 | ⊢ ( rec ( 𝐹 , ∅ ) ‘ ∅ ) = ∅ |
| 20 | 17 19 | eqtr4di | ⊢ ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ ∅ ) = ( rec ( 𝐹 , ∅ ) ‘ ∅ ) ) |
| 21 | fveq2 | ⊢ ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) → ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) | |
| 22 | rdgsuc | ⊢ ( 𝑦 ∈ On → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) ) ) | |
| 23 | rdgsuc | ⊢ ( 𝑦 ∈ On → ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑦 ∈ On → ( ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ↔ ( 𝐹 ‘ ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) ) = ( 𝐹 ‘ ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) ) |
| 25 | 21 24 | imbitrrid | ⊢ ( 𝑦 ∈ On → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ) ) |
| 26 | 25 | imim2d | ⊢ ( 𝑦 ∈ On → ( ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) → ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ suc 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ suc 𝑦 ) ) ) ) |
| 27 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑧 ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ↔ ( ¬ 𝐼 ∈ V → ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) | |
| 28 | limord | ⊢ ( Lim 𝑧 → Ord 𝑧 ) | |
| 29 | ordsson | ⊢ ( Ord 𝑧 → 𝑧 ⊆ On ) | |
| 30 | rdgfnon | ⊢ rec ( 𝐹 , 𝐼 ) Fn On | |
| 31 | rdgfnon | ⊢ rec ( 𝐹 , ∅ ) Fn On | |
| 32 | fvreseq | ⊢ ( ( ( rec ( 𝐹 , 𝐼 ) Fn On ∧ rec ( 𝐹 , ∅ ) Fn On ) ∧ 𝑧 ⊆ On ) → ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) | |
| 33 | 30 31 32 | mpanl12 | ⊢ ( 𝑧 ⊆ On → ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) |
| 34 | 28 29 33 | 3syl | ⊢ ( Lim 𝑧 → ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) ) |
| 35 | rneq | ⊢ ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) → ran ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ran ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) ) | |
| 36 | df-ima | ⊢ ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) = ran ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) | |
| 37 | df-ima | ⊢ ( rec ( 𝐹 , ∅ ) “ 𝑧 ) = ran ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) | |
| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) → ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) = ( rec ( 𝐹 , ∅ ) “ 𝑧 ) ) |
| 39 | 38 | unieqd | ⊢ ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) → ∪ ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) = ∪ ( rec ( 𝐹 , ∅ ) “ 𝑧 ) ) |
| 40 | vex | ⊢ 𝑧 ∈ V | |
| 41 | rdglim | ⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ∪ ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) ) | |
| 42 | rdglim | ⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) = ∪ ( rec ( 𝐹 , ∅ ) “ 𝑧 ) ) | |
| 43 | 41 42 | eqeq12d | ⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ∪ ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) = ∪ ( rec ( 𝐹 , ∅ ) “ 𝑧 ) ) ) |
| 44 | 40 43 | mpan | ⊢ ( Lim 𝑧 → ( ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ↔ ∪ ( rec ( 𝐹 , 𝐼 ) “ 𝑧 ) = ∪ ( rec ( 𝐹 , ∅ ) “ 𝑧 ) ) ) |
| 45 | 39 44 | imbitrrid | ⊢ ( Lim 𝑧 → ( ( rec ( 𝐹 , 𝐼 ) ↾ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ↾ 𝑧 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ) |
| 46 | 34 45 | sylbird | ⊢ ( Lim 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ) |
| 47 | 46 | imim2d | ⊢ ( Lim 𝑧 → ( ( ¬ 𝐼 ∈ V → ∀ 𝑦 ∈ 𝑧 ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) → ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ) ) |
| 48 | 27 47 | biimtrid | ⊢ ( Lim 𝑧 → ( ∀ 𝑦 ∈ 𝑧 ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑦 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑦 ) ) → ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑧 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑧 ) ) ) ) |
| 49 | 4 8 12 16 20 26 48 | tfinds | ⊢ ( 𝑥 ∈ On → ( ¬ 𝐼 ∈ V → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) ) |
| 50 | 49 | com12 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝑥 ∈ On → ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) ) |
| 51 | 50 | ralrimiv | ⊢ ( ¬ 𝐼 ∈ V → ∀ 𝑥 ∈ On ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) |
| 52 | eqfnfv | ⊢ ( ( rec ( 𝐹 , 𝐼 ) Fn On ∧ rec ( 𝐹 , ∅ ) Fn On ) → ( rec ( 𝐹 , 𝐼 ) = rec ( 𝐹 , ∅ ) ↔ ∀ 𝑥 ∈ On ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) ) | |
| 53 | 30 31 52 | mp2an | ⊢ ( rec ( 𝐹 , 𝐼 ) = rec ( 𝐹 , ∅ ) ↔ ∀ 𝑥 ∈ On ( rec ( 𝐹 , 𝐼 ) ‘ 𝑥 ) = ( rec ( 𝐹 , ∅ ) ‘ 𝑥 ) ) |
| 54 | 51 53 | sylibr | ⊢ ( ¬ 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = rec ( 𝐹 , ∅ ) ) |