This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator when I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgprc | |- ( -. I e. _V -> rec ( F , I ) = rec ( F , (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( z = (/) -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` (/) ) ) |
|
| 2 | fveq2 | |- ( z = (/) -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` (/) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( z = (/) -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) ) |
| 4 | 3 | imbi2d | |- ( z = (/) -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) ) ) |
| 5 | fveq2 | |- ( z = y -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` y ) ) |
|
| 6 | fveq2 | |- ( z = y -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` y ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( z = y -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
| 8 | 7 | imbi2d | |- ( z = y -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) ) |
| 9 | fveq2 | |- ( z = suc y -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` suc y ) ) |
|
| 10 | fveq2 | |- ( z = suc y -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` suc y ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( z = suc y -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) |
| 12 | 11 | imbi2d | |- ( z = suc y -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) ) |
| 13 | fveq2 | |- ( z = x -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` x ) ) |
|
| 14 | fveq2 | |- ( z = x -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` x ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( z = x -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
| 16 | 15 | imbi2d | |- ( z = x -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) ) |
| 17 | rdgprc0 | |- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = (/) ) |
|
| 18 | 0ex | |- (/) e. _V |
|
| 19 | 18 | rdg0 | |- ( rec ( F , (/) ) ` (/) ) = (/) |
| 20 | 17 19 | eqtr4di | |- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) |
| 21 | fveq2 | |- ( ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( F ` ( rec ( F , I ) ` y ) ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) |
|
| 22 | rdgsuc | |- ( y e. On -> ( rec ( F , I ) ` suc y ) = ( F ` ( rec ( F , I ) ` y ) ) ) |
|
| 23 | rdgsuc | |- ( y e. On -> ( rec ( F , (/) ) ` suc y ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) |
|
| 24 | 22 23 | eqeq12d | |- ( y e. On -> ( ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) <-> ( F ` ( rec ( F , I ) ` y ) ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) ) |
| 25 | 21 24 | imbitrrid | |- ( y e. On -> ( ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) |
| 26 | 25 | imim2d | |- ( y e. On -> ( ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) ) |
| 27 | r19.21v | |- ( A. y e. z ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) <-> ( -. I e. _V -> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
|
| 28 | limord | |- ( Lim z -> Ord z ) |
|
| 29 | ordsson | |- ( Ord z -> z C_ On ) |
|
| 30 | rdgfnon | |- rec ( F , I ) Fn On |
|
| 31 | rdgfnon | |- rec ( F , (/) ) Fn On |
|
| 32 | fvreseq | |- ( ( ( rec ( F , I ) Fn On /\ rec ( F , (/) ) Fn On ) /\ z C_ On ) -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
|
| 33 | 30 31 32 | mpanl12 | |- ( z C_ On -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
| 34 | 28 29 33 | 3syl | |- ( Lim z -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
| 35 | rneq | |- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ran ( rec ( F , I ) |` z ) = ran ( rec ( F , (/) ) |` z ) ) |
|
| 36 | df-ima | |- ( rec ( F , I ) " z ) = ran ( rec ( F , I ) |` z ) |
|
| 37 | df-ima | |- ( rec ( F , (/) ) " z ) = ran ( rec ( F , (/) ) |` z ) |
|
| 38 | 35 36 37 | 3eqtr4g | |- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ( rec ( F , I ) " z ) = ( rec ( F , (/) ) " z ) ) |
| 39 | 38 | unieqd | |- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) |
| 40 | vex | |- z e. _V |
|
| 41 | rdglim | |- ( ( z e. _V /\ Lim z ) -> ( rec ( F , I ) ` z ) = U. ( rec ( F , I ) " z ) ) |
|
| 42 | rdglim | |- ( ( z e. _V /\ Lim z ) -> ( rec ( F , (/) ) ` z ) = U. ( rec ( F , (/) ) " z ) ) |
|
| 43 | 41 42 | eqeq12d | |- ( ( z e. _V /\ Lim z ) -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) ) |
| 44 | 40 43 | mpan | |- ( Lim z -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) ) |
| 45 | 39 44 | imbitrrid | |- ( Lim z -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) |
| 46 | 34 45 | sylbird | |- ( Lim z -> ( A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) |
| 47 | 46 | imim2d | |- ( Lim z -> ( ( -. I e. _V -> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) ) |
| 48 | 27 47 | biimtrid | |- ( Lim z -> ( A. y e. z ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) ) |
| 49 | 4 8 12 16 20 26 48 | tfinds | |- ( x e. On -> ( -. I e. _V -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
| 50 | 49 | com12 | |- ( -. I e. _V -> ( x e. On -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
| 51 | 50 | ralrimiv | |- ( -. I e. _V -> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) |
| 52 | eqfnfv | |- ( ( rec ( F , I ) Fn On /\ rec ( F , (/) ) Fn On ) -> ( rec ( F , I ) = rec ( F , (/) ) <-> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
|
| 53 | 30 31 52 | mp2an | |- ( rec ( F , I ) = rec ( F , (/) ) <-> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) |
| 54 | 51 53 | sylibr | |- ( -. I e. _V -> rec ( F , I ) = rec ( F , (/) ) ) |