This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the rank function. See rankval , rankval2 , rankval3 , or rankval4 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function R1 : given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of TakeutiZaring p. 79. Theorem rankid illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a . (Contributed by NM, 11-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rank | ⊢ rank = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crnk | ⊢ rank | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | con0 | ⊢ On | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | cr1 | ⊢ 𝑅1 | |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 | csuc | ⊢ suc 𝑦 |
| 9 | 8 6 | cfv | ⊢ ( 𝑅1 ‘ suc 𝑦 ) |
| 10 | 5 9 | wcel | ⊢ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) |
| 11 | 10 3 4 | crab | ⊢ { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) } |
| 12 | 11 | cint | ⊢ ∩ { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) } |
| 13 | 1 2 12 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) } ) |
| 14 | 0 13 | wceq | ⊢ rank = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ suc 𝑦 ) } ) |