This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankvalg | ⊢ ( 𝐴 ∈ 𝑉 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐴 ) ) | |
| 2 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) ) | |
| 3 | 2 | rabbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 4 | 3 | inteqd | ⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( rank ‘ 𝑦 ) = ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ↔ ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 6 | rankval | ⊢ ( rank ‘ 𝑦 ) = ∩ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
| 8 | 5 7 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |