This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an alternate definition of the rank function. Definition of BellMachover p. 478. (Contributed by NM, 8-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankval2 | |- ( A e. B -> ( rank ` A ) = |^| { x e. On | A C_ ( R1 ` x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankvalg | |- ( A e. B -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
|
| 2 | r1suc | |- ( x e. On -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
|
| 3 | 2 | eleq2d | |- ( x e. On -> ( A e. ( R1 ` suc x ) <-> A e. ~P ( R1 ` x ) ) ) |
| 4 | fvex | |- ( R1 ` x ) e. _V |
|
| 5 | 4 | elpw2 | |- ( A e. ~P ( R1 ` x ) <-> A C_ ( R1 ` x ) ) |
| 6 | 3 5 | bitrdi | |- ( x e. On -> ( A e. ( R1 ` suc x ) <-> A C_ ( R1 ` x ) ) ) |
| 7 | 6 | rabbiia | |- { x e. On | A e. ( R1 ` suc x ) } = { x e. On | A C_ ( R1 ` x ) } |
| 8 | 7 | inteqi | |- |^| { x e. On | A e. ( R1 ` suc x ) } = |^| { x e. On | A C_ ( R1 ` x ) } |
| 9 | 1 8 | eqtrdi | |- ( A e. B -> ( rank ` A ) = |^| { x e. On | A C_ ( R1 ` x ) } ) |