This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| rankxpl.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | rankmapu | ⊢ ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankxpl.2 | ⊢ 𝐵 ∈ V | |
| 3 | mapsspw | ⊢ ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) | |
| 4 | 2 1 | xpex | ⊢ ( 𝐵 × 𝐴 ) ∈ V |
| 5 | 4 | pwex | ⊢ 𝒫 ( 𝐵 × 𝐴 ) ∈ V |
| 6 | 5 | rankss | ⊢ ( ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) → ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) ) |
| 7 | 3 6 | ax-mp | ⊢ ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) |
| 8 | 4 | rankpw | ⊢ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) = suc ( rank ‘ ( 𝐵 × 𝐴 ) ) |
| 9 | 2 1 | rankxpu | ⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) |
| 10 | uncom | ⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) | |
| 11 | 10 | fveq2i | ⊢ ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 12 | suceq | ⊢ ( ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | suceq | ⊢ ( suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ suc suc ( rank ‘ ( 𝐵 ∪ 𝐴 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 16 | 9 15 | sseqtri | ⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 17 | rankon | ⊢ ( rank ‘ ( 𝐵 × 𝐴 ) ) ∈ On | |
| 18 | 17 | onordi | ⊢ Ord ( rank ‘ ( 𝐵 × 𝐴 ) ) |
| 19 | rankon | ⊢ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On | |
| 20 | 19 | onsuci | ⊢ suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
| 21 | 20 | onsuci | ⊢ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
| 22 | 21 | onordi | ⊢ Ord suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 23 | ordsucsssuc | ⊢ ( ( Ord ( rank ‘ ( 𝐵 × 𝐴 ) ) ∧ Ord suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 24 | 18 22 23 | mp2an | ⊢ ( ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 25 | 16 24 | mpbi | ⊢ suc ( rank ‘ ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 26 | 8 25 | eqsstri | ⊢ ( rank ‘ 𝒫 ( 𝐵 × 𝐴 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 27 | 7 26 | sstri | ⊢ ( rank ‘ ( 𝐴 ↑m 𝐵 ) ) ⊆ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |