This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxpl.1 | |- A e. _V |
|
| rankxpl.2 | |- B e. _V |
||
| Assertion | rankmapu | |- ( rank ` ( A ^m B ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxpl.1 | |- A e. _V |
|
| 2 | rankxpl.2 | |- B e. _V |
|
| 3 | mapsspw | |- ( A ^m B ) C_ ~P ( B X. A ) |
|
| 4 | 2 1 | xpex | |- ( B X. A ) e. _V |
| 5 | 4 | pwex | |- ~P ( B X. A ) e. _V |
| 6 | 5 | rankss | |- ( ( A ^m B ) C_ ~P ( B X. A ) -> ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) ) |
| 7 | 3 6 | ax-mp | |- ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) |
| 8 | 4 | rankpw | |- ( rank ` ~P ( B X. A ) ) = suc ( rank ` ( B X. A ) ) |
| 9 | 2 1 | rankxpu | |- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( B u. A ) ) |
| 10 | uncom | |- ( B u. A ) = ( A u. B ) |
|
| 11 | 10 | fveq2i | |- ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) |
| 12 | suceq | |- ( ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) -> suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) ) |
|
| 13 | 11 12 | ax-mp | |- suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) |
| 14 | suceq | |- ( suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) -> suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) ) |
|
| 15 | 13 14 | ax-mp | |- suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) |
| 16 | 9 15 | sseqtri | |- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) |
| 17 | rankon | |- ( rank ` ( B X. A ) ) e. On |
|
| 18 | 17 | onordi | |- Ord ( rank ` ( B X. A ) ) |
| 19 | rankon | |- ( rank ` ( A u. B ) ) e. On |
|
| 20 | 19 | onsuci | |- suc ( rank ` ( A u. B ) ) e. On |
| 21 | 20 | onsuci | |- suc suc ( rank ` ( A u. B ) ) e. On |
| 22 | 21 | onordi | |- Ord suc suc ( rank ` ( A u. B ) ) |
| 23 | ordsucsssuc | |- ( ( Ord ( rank ` ( B X. A ) ) /\ Ord suc suc ( rank ` ( A u. B ) ) ) -> ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) ) |
|
| 24 | 18 22 23 | mp2an | |- ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) |
| 25 | 16 24 | mpbi | |- suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
| 26 | 8 25 | eqsstri | |- ( rank ` ~P ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
| 27 | 7 26 | sstri | |- ( rank ` ( A ^m B ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |