This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankeq0b | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 = ∅ ↔ ( rank ‘ 𝐴 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ( rank ‘ ∅ ) ) | |
| 2 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 3 | 2 | simpri | ⊢ Lim dom 𝑅1 |
| 4 | limomss | ⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) | |
| 5 | 3 4 | ax-mp | ⊢ ω ⊆ dom 𝑅1 |
| 6 | peano1 | ⊢ ∅ ∈ ω | |
| 7 | 5 6 | sselii | ⊢ ∅ ∈ dom 𝑅1 |
| 8 | rankonid | ⊢ ( ∅ ∈ dom 𝑅1 ↔ ( rank ‘ ∅ ) = ∅ ) | |
| 9 | 7 8 | mpbi | ⊢ ( rank ‘ ∅ ) = ∅ |
| 10 | 1 9 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ∅ ) |
| 11 | eqimss | ⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( rank ‘ 𝐴 ) ⊆ ∅ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → ( rank ‘ 𝐴 ) ⊆ ∅ ) |
| 13 | simpl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 14 | rankr1bg | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∅ ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ ∅ ) ↔ ( rank ‘ 𝐴 ) ⊆ ∅ ) ) | |
| 15 | 13 7 14 | sylancl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → ( 𝐴 ⊆ ( 𝑅1 ‘ ∅ ) ↔ ( rank ‘ 𝐴 ) ⊆ ∅ ) ) |
| 16 | 12 15 | mpbird | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → 𝐴 ⊆ ( 𝑅1 ‘ ∅ ) ) |
| 17 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 18 | 16 17 | sseqtrdi | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → 𝐴 ⊆ ∅ ) |
| 19 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = ∅ ) → 𝐴 = ∅ ) |
| 21 | 20 | ex | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) = ∅ → 𝐴 = ∅ ) ) |
| 22 | 10 21 | impbid2 | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 = ∅ ↔ ( rank ‘ 𝐴 ) = ∅ ) ) |