This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankeq0b | |- ( A e. U. ( R1 " On ) -> ( A = (/) <-> ( rank ` A ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = (/) -> ( rank ` A ) = ( rank ` (/) ) ) |
|
| 2 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 3 | 2 | simpri | |- Lim dom R1 |
| 4 | limomss | |- ( Lim dom R1 -> _om C_ dom R1 ) |
|
| 5 | 3 4 | ax-mp | |- _om C_ dom R1 |
| 6 | peano1 | |- (/) e. _om |
|
| 7 | 5 6 | sselii | |- (/) e. dom R1 |
| 8 | rankonid | |- ( (/) e. dom R1 <-> ( rank ` (/) ) = (/) ) |
|
| 9 | 7 8 | mpbi | |- ( rank ` (/) ) = (/) |
| 10 | 1 9 | eqtrdi | |- ( A = (/) -> ( rank ` A ) = (/) ) |
| 11 | eqimss | |- ( ( rank ` A ) = (/) -> ( rank ` A ) C_ (/) ) |
|
| 12 | 11 | adantl | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> ( rank ` A ) C_ (/) ) |
| 13 | simpl | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> A e. U. ( R1 " On ) ) |
|
| 14 | rankr1bg | |- ( ( A e. U. ( R1 " On ) /\ (/) e. dom R1 ) -> ( A C_ ( R1 ` (/) ) <-> ( rank ` A ) C_ (/) ) ) |
|
| 15 | 13 7 14 | sylancl | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> ( A C_ ( R1 ` (/) ) <-> ( rank ` A ) C_ (/) ) ) |
| 16 | 12 15 | mpbird | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> A C_ ( R1 ` (/) ) ) |
| 17 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 18 | 16 17 | sseqtrdi | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> A C_ (/) ) |
| 19 | ss0 | |- ( A C_ (/) -> A = (/) ) |
|
| 20 | 18 19 | syl | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` A ) = (/) ) -> A = (/) ) |
| 21 | 20 | ex | |- ( A e. U. ( R1 " On ) -> ( ( rank ` A ) = (/) -> A = (/) ) ) |
| 22 | 10 21 | impbid2 | |- ( A e. U. ( R1 " On ) -> ( A = (/) <-> ( rank ` A ) = (/) ) ) |