This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankelun.1 | ⊢ 𝐴 ∈ V | |
| rankelun.2 | ⊢ 𝐵 ∈ V | ||
| rankelun.3 | ⊢ 𝐶 ∈ V | ||
| rankelun.4 | ⊢ 𝐷 ∈ V | ||
| Assertion | rankelop | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankelun.2 | ⊢ 𝐵 ∈ V | |
| 3 | rankelun.3 | ⊢ 𝐶 ∈ V | |
| 4 | rankelun.4 | ⊢ 𝐷 ∈ V | |
| 5 | 1 2 3 4 | rankelpr | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 6 | rankon | ⊢ ( rank ‘ { 𝐶 , 𝐷 } ) ∈ On | |
| 7 | 6 | onordi | ⊢ Ord ( rank ‘ { 𝐶 , 𝐷 } ) |
| 8 | ordsucelsuc | ⊢ ( Ord ( rank ‘ { 𝐶 , 𝐷 } ) → ( ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ↔ suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ↔ suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 10 | 5 9 | sylib | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → suc ( rank ‘ { 𝐴 , 𝐵 } ) ∈ suc ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| 11 | 1 2 | rankop | ⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 12 | 1 2 | rankpr | ⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 13 | suceq | ⊢ ( ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → suc ( rank ‘ { 𝐴 , 𝐵 } ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ suc ( rank ‘ { 𝐴 , 𝐵 } ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 15 | 11 14 | eqtr4i | ⊢ ( rank ‘ 〈 𝐴 , 𝐵 〉 ) = suc ( rank ‘ { 𝐴 , 𝐵 } ) |
| 16 | 3 4 | rankop | ⊢ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 17 | 3 4 | rankpr | ⊢ ( rank ‘ { 𝐶 , 𝐷 } ) = suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 18 | suceq | ⊢ ( ( rank ‘ { 𝐶 , 𝐷 } ) = suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) → suc ( rank ‘ { 𝐶 , 𝐷 } ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ suc ( rank ‘ { 𝐶 , 𝐷 } ) = suc suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 20 | 16 19 | eqtr4i | ⊢ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) = suc ( rank ‘ { 𝐶 , 𝐷 } ) |
| 21 | 10 15 20 | 3eltr4g | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( rank ‘ 〈 𝐶 , 𝐷 〉 ) ) |