This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankelun.1 | ⊢ 𝐴 ∈ V | |
| rankelun.2 | ⊢ 𝐵 ∈ V | ||
| rankelun.3 | ⊢ 𝐶 ∈ V | ||
| rankelun.4 | ⊢ 𝐷 ∈ V | ||
| Assertion | rankelpr | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankelun.2 | ⊢ 𝐵 ∈ V | |
| 3 | rankelun.3 | ⊢ 𝐶 ∈ V | |
| 4 | rankelun.4 | ⊢ 𝐷 ∈ V | |
| 5 | 1 2 3 4 | rankelun | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( rank ‘ ( 𝐶 ∪ 𝐷 ) ) ) |
| 6 | 1 2 | rankun | ⊢ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 7 | 3 4 | rankun | ⊢ ( rank ‘ ( 𝐶 ∪ 𝐷 ) ) = ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 8 | 5 6 7 | 3eltr3g | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) |
| 9 | rankon | ⊢ ( rank ‘ 𝐶 ) ∈ On | |
| 10 | rankon | ⊢ ( rank ‘ 𝐷 ) ∈ On | |
| 11 | 9 10 | onun2i | ⊢ ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ∈ On |
| 12 | 11 | onordi | ⊢ Ord ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 13 | ordsucelsuc | ⊢ ( Ord ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) → ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ↔ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ↔ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) |
| 15 | 8 14 | sylib | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) ) |
| 16 | 1 2 | rankpr | ⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) |
| 17 | 3 4 | rankpr | ⊢ ( rank ‘ { 𝐶 , 𝐷 } ) = suc ( ( rank ‘ 𝐶 ) ∪ ( rank ‘ 𝐷 ) ) |
| 18 | 15 16 17 | 3eltr4g | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ ( rank ‘ 𝐶 ) ∧ ( rank ‘ 𝐵 ) ∈ ( rank ‘ 𝐷 ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) ∈ ( rank ‘ { 𝐶 , 𝐷 } ) ) |