This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| rankxpl.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | rankxpl | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankxpl.2 | ⊢ 𝐵 ∈ V | |
| 3 | unixp | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 5 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 6 | 5 | uniex | ⊢ ∪ ( 𝐴 × 𝐵 ) ∈ V |
| 7 | 6 | rankuniss | ⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) |
| 8 | 5 | rankuniss | ⊢ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 9 | 7 8 | sstri | ⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 10 | 4 9 | eqsstrrdi | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |