This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankelun.1 | |- A e. _V |
|
| rankelun.2 | |- B e. _V |
||
| rankelun.3 | |- C e. _V |
||
| rankelun.4 | |- D e. _V |
||
| Assertion | rankelop | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` <. A , B >. ) e. ( rank ` <. C , D >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | |- A e. _V |
|
| 2 | rankelun.2 | |- B e. _V |
|
| 3 | rankelun.3 | |- C e. _V |
|
| 4 | rankelun.4 | |- D e. _V |
|
| 5 | 1 2 3 4 | rankelpr | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` { A , B } ) e. ( rank ` { C , D } ) ) |
| 6 | rankon | |- ( rank ` { C , D } ) e. On |
|
| 7 | 6 | onordi | |- Ord ( rank ` { C , D } ) |
| 8 | ordsucelsuc | |- ( Ord ( rank ` { C , D } ) -> ( ( rank ` { A , B } ) e. ( rank ` { C , D } ) <-> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( rank ` { A , B } ) e. ( rank ` { C , D } ) <-> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) |
| 10 | 5 9 | sylib | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> suc ( rank ` { A , B } ) e. suc ( rank ` { C , D } ) ) |
| 11 | 1 2 | rankop | |- ( rank ` <. A , B >. ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 12 | 1 2 | rankpr | |- ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 13 | suceq | |- ( ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) -> suc ( rank ` { A , B } ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) ) |
|
| 14 | 12 13 | ax-mp | |- suc ( rank ` { A , B } ) = suc suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 15 | 11 14 | eqtr4i | |- ( rank ` <. A , B >. ) = suc ( rank ` { A , B } ) |
| 16 | 3 4 | rankop | |- ( rank ` <. C , D >. ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 17 | 3 4 | rankpr | |- ( rank ` { C , D } ) = suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 18 | suceq | |- ( ( rank ` { C , D } ) = suc ( ( rank ` C ) u. ( rank ` D ) ) -> suc ( rank ` { C , D } ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) ) |
|
| 19 | 17 18 | ax-mp | |- suc ( rank ` { C , D } ) = suc suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 20 | 16 19 | eqtr4i | |- ( rank ` <. C , D >. ) = suc ( rank ` { C , D } ) |
| 21 | 10 15 20 | 3eltr4g | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` <. A , B >. ) e. ( rank ` <. C , D >. ) ) |