This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankbnd2 | ⊢ ( 𝐵 ∈ On → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankuni | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) | |
| 3 | 1 | rankuni2 | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 4 | 2 3 | eqtr3i | ⊢ ∪ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 5 | 4 | sseq1i | ⊢ ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) |
| 6 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) | |
| 7 | 5 6 | bitr2i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) |
| 8 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 9 | 8 | onssi | ⊢ ( rank ‘ 𝐴 ) ⊆ On |
| 10 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 11 | ordunisssuc | ⊢ ( ( ( rank ‘ 𝐴 ) ⊆ On ∧ Ord 𝐵 ) → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝐵 ∈ On → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
| 13 | 7 12 | bitrid | ⊢ ( 𝐵 ∈ On → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |