This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 8-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprgf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ralprgf.2 | ⊢ Ⅎ 𝑥 𝜒 | ||
| ralprgf.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ralprgf.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | ralprgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprgf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ralprgf.2 | ⊢ Ⅎ 𝑥 𝜒 | |
| 3 | ralprgf.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | ralprgf.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 5 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 6 | 5 | raleqi | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ∀ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 ) |
| 7 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) |
| 9 | 1 3 | ralsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| 10 | 2 4 | ralsngf | ⊢ ( 𝐵 ∈ 𝑊 → ( ∀ 𝑥 ∈ { 𝐵 } 𝜑 ↔ 𝜒 ) ) |
| 11 | 9 10 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
| 12 | 8 11 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |