This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 8-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprgf.1 | |- F/ x ps |
|
| ralprgf.2 | |- F/ x ch |
||
| ralprgf.a | |- ( x = A -> ( ph <-> ps ) ) |
||
| ralprgf.b | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | ralprgf | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprgf.1 | |- F/ x ps |
|
| 2 | ralprgf.2 | |- F/ x ch |
|
| 3 | ralprgf.a | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | ralprgf.b | |- ( x = B -> ( ph <-> ch ) ) |
|
| 5 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 6 | 5 | raleqi | |- ( A. x e. { A , B } ph <-> A. x e. ( { A } u. { B } ) ph ) |
| 7 | ralunb | |- ( A. x e. ( { A } u. { B } ) ph <-> ( A. x e. { A } ph /\ A. x e. { B } ph ) ) |
|
| 8 | 6 7 | bitri | |- ( A. x e. { A , B } ph <-> ( A. x e. { A } ph /\ A. x e. { B } ph ) ) |
| 9 | 1 3 | ralsngf | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |
| 10 | 2 4 | ralsngf | |- ( B e. W -> ( A. x e. { B } ph <-> ch ) ) |
| 11 | 9 10 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A. x e. { A } ph /\ A. x e. { B } ph ) <-> ( ps /\ ch ) ) ) |
| 12 | 8 11 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ph <-> ( ps /\ ch ) ) ) |