This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ralprgf
Metamath Proof Explorer
Description: Convert a restricted universal quantification over a pair to a
conjunction, using bound-variable hypotheses instead of distinct
variable conditions. (Contributed by NM , 17-Sep-2011) (Revised by AV , 8-Apr-2023)
Ref
Expression
Hypotheses
ralprgf.1
⊢ Ⅎ x ψ
ralprgf.2
⊢ Ⅎ x χ
ralprgf.a
⊢ x = A → φ ↔ ψ
ralprgf.b
⊢ x = B → φ ↔ χ
Assertion
ralprgf
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A B φ ↔ ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
ralprgf.1
⊢ Ⅎ x ψ
2
ralprgf.2
⊢ Ⅎ x χ
3
ralprgf.a
⊢ x = A → φ ↔ ψ
4
ralprgf.b
⊢ x = B → φ ↔ χ
5
df-pr
⊢ A B = A ∪ B
6
5
raleqi
⊢ ∀ x ∈ A B φ ↔ ∀ x ∈ A ∪ B φ
7
ralunb
⊢ ∀ x ∈ A ∪ B φ ↔ ∀ x ∈ A φ ∧ ∀ x ∈ B φ
8
6 7
bitri
⊢ ∀ x ∈ A B φ ↔ ∀ x ∈ A φ ∧ ∀ x ∈ B φ
9
1 3
ralsngf
⊢ A ∈ V → ∀ x ∈ A φ ↔ ψ
10
2 4
ralsngf
⊢ B ∈ W → ∀ x ∈ B φ ↔ χ
11
9 10
bi2anan9
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A φ ∧ ∀ x ∈ B φ ↔ ψ ∧ χ
12
8 11
bitrid
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A B φ ↔ ψ ∧ χ