This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted universal quantifiers. Note that x and y need not be disjoint (this makes the proof longer). This theorem relies on the full set of axioms up to ax-ext and it should no longer be used. Usage of ralcom is highly encouraged. (Contributed by NM, 24-Nov-1994) (Proof shortened by Mario Carneiro, 17-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralcom2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 2 | 1 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 3 | 2 | imbi1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
| 4 | 3 | dral1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
| 5 | 4 | bicomd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 6 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) | |
| 7 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 9 | 2 8 | imbi12d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 10 | 9 | dral1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 11 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ) | |
| 12 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 13 | 10 11 12 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 14 | 13 | biimpd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 15 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 16 | nfra2 | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 | |
| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 18 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 19 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 | |
| 20 | 18 19 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 21 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 22 | 21 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝑦 ) |
| 23 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝐴 ) | |
| 24 | 22 23 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 25 | 20 24 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) |
| 26 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝜑 ) ) | |
| 27 | 26 | ancomsd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
| 28 | 27 | expdimp | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 30 | 25 29 | ralrimi | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 31 | 30 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 32 | 17 31 | ralrimi | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 33 | 32 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 34 | 14 33 | pm2.61i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |