This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabssnn0fi | |- ( { x e. NN0 | ph } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { x e. NN0 | ph } C_ NN0 |
|
| 2 | ssnn0fi | |- ( { x e. NN0 | ph } C_ NN0 -> ( { x e. NN0 | ph } e. Fin <-> E. s e. NN0 A. y e. NN0 ( s < y -> y e/ { x e. NN0 | ph } ) ) ) |
|
| 3 | nnel | |- ( -. y e/ { x e. NN0 | ph } <-> y e. { x e. NN0 | ph } ) |
|
| 4 | nfcv | |- F/_ x y |
|
| 5 | nfcv | |- F/_ x NN0 |
|
| 6 | nfsbc1v | |- F/ x [. y / x ]. -. ph |
|
| 7 | 6 | nfn | |- F/ x -. [. y / x ]. -. ph |
| 8 | sbceq2a | |- ( y = x -> ( [. y / x ]. -. ph <-> -. ph ) ) |
|
| 9 | 8 | equcoms | |- ( x = y -> ( [. y / x ]. -. ph <-> -. ph ) ) |
| 10 | 9 | con2bid | |- ( x = y -> ( ph <-> -. [. y / x ]. -. ph ) ) |
| 11 | 4 5 7 10 | elrabf | |- ( y e. { x e. NN0 | ph } <-> ( y e. NN0 /\ -. [. y / x ]. -. ph ) ) |
| 12 | 11 | baib | |- ( y e. NN0 -> ( y e. { x e. NN0 | ph } <-> -. [. y / x ]. -. ph ) ) |
| 13 | 3 12 | bitrid | |- ( y e. NN0 -> ( -. y e/ { x e. NN0 | ph } <-> -. [. y / x ]. -. ph ) ) |
| 14 | 13 | con4bid | |- ( y e. NN0 -> ( y e/ { x e. NN0 | ph } <-> [. y / x ]. -. ph ) ) |
| 15 | 14 | imbi2d | |- ( y e. NN0 -> ( ( s < y -> y e/ { x e. NN0 | ph } ) <-> ( s < y -> [. y / x ]. -. ph ) ) ) |
| 16 | 15 | ralbiia | |- ( A. y e. NN0 ( s < y -> y e/ { x e. NN0 | ph } ) <-> A. y e. NN0 ( s < y -> [. y / x ]. -. ph ) ) |
| 17 | nfv | |- F/ x s < y |
|
| 18 | 17 6 | nfim | |- F/ x ( s < y -> [. y / x ]. -. ph ) |
| 19 | nfv | |- F/ y ( s < x -> -. ph ) |
|
| 20 | breq2 | |- ( y = x -> ( s < y <-> s < x ) ) |
|
| 21 | 20 8 | imbi12d | |- ( y = x -> ( ( s < y -> [. y / x ]. -. ph ) <-> ( s < x -> -. ph ) ) ) |
| 22 | 18 19 21 | cbvralw | |- ( A. y e. NN0 ( s < y -> [. y / x ]. -. ph ) <-> A. x e. NN0 ( s < x -> -. ph ) ) |
| 23 | 16 22 | bitri | |- ( A. y e. NN0 ( s < y -> y e/ { x e. NN0 | ph } ) <-> A. x e. NN0 ( s < x -> -. ph ) ) |
| 24 | 23 | a1i | |- ( ( { x e. NN0 | ph } C_ NN0 /\ s e. NN0 ) -> ( A. y e. NN0 ( s < y -> y e/ { x e. NN0 | ph } ) <-> A. x e. NN0 ( s < x -> -. ph ) ) ) |
| 25 | 24 | rexbidva | |- ( { x e. NN0 | ph } C_ NN0 -> ( E. s e. NN0 A. y e. NN0 ( s < y -> y e/ { x e. NN0 | ph } ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ph ) ) ) |
| 26 | 2 25 | bitrd | |- ( { x e. NN0 | ph } C_ NN0 -> ( { x e. NN0 | ph } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ph ) ) ) |
| 27 | 1 26 | ax-mp | |- ( { x e. NN0 | ph } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ph ) ) |