This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Revised by Thierry Arnoux, 13-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | rabid2f | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | 1 | eqabf | ⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 3 | pm4.71 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 5 | 2 4 | bitr4i | ⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 6 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 7 | 6 | eqeq2i | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 8 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 9 | 5 7 8 | 3bitr4i | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |