This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of hereditarily finite sets is countable. See ackbij2 for an explicit bijection that works without Infinity. See also r1omALT . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1om | |- ( R1 ` _om ) ~~ _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | |- _om e. _V |
|
| 2 | limom | |- Lim _om |
|
| 3 | r1lim | |- ( ( _om e. _V /\ Lim _om ) -> ( R1 ` _om ) = U_ a e. _om ( R1 ` a ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( R1 ` _om ) = U_ a e. _om ( R1 ` a ) |
| 5 | r1fnon | |- R1 Fn On |
|
| 6 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 7 | funiunfv | |- ( Fun R1 -> U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) ) |
|
| 8 | 5 6 7 | mp2b | |- U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) |
| 9 | 4 8 | eqtri | |- ( R1 ` _om ) = U. ( R1 " _om ) |
| 10 | iuneq1 | |- ( e = a -> U_ f e. e ( { f } X. ~P f ) = U_ f e. a ( { f } X. ~P f ) ) |
|
| 11 | sneq | |- ( f = b -> { f } = { b } ) |
|
| 12 | pweq | |- ( f = b -> ~P f = ~P b ) |
|
| 13 | 11 12 | xpeq12d | |- ( f = b -> ( { f } X. ~P f ) = ( { b } X. ~P b ) ) |
| 14 | 13 | cbviunv | |- U_ f e. a ( { f } X. ~P f ) = U_ b e. a ( { b } X. ~P b ) |
| 15 | 10 14 | eqtrdi | |- ( e = a -> U_ f e. e ( { f } X. ~P f ) = U_ b e. a ( { b } X. ~P b ) ) |
| 16 | 15 | fveq2d | |- ( e = a -> ( card ` U_ f e. e ( { f } X. ~P f ) ) = ( card ` U_ b e. a ( { b } X. ~P b ) ) ) |
| 17 | 16 | cbvmptv | |- ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) = ( a e. ( ~P _om i^i Fin ) |-> ( card ` U_ b e. a ( { b } X. ~P b ) ) ) |
| 18 | dmeq | |- ( c = a -> dom c = dom a ) |
|
| 19 | 18 | pweqd | |- ( c = a -> ~P dom c = ~P dom a ) |
| 20 | imaeq1 | |- ( c = a -> ( c " d ) = ( a " d ) ) |
|
| 21 | 20 | fveq2d | |- ( c = a -> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) = ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " d ) ) ) |
| 22 | 19 21 | mpteq12dv | |- ( c = a -> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) = ( d e. ~P dom a |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " d ) ) ) ) |
| 23 | imaeq2 | |- ( d = b -> ( a " d ) = ( a " b ) ) |
|
| 24 | 23 | fveq2d | |- ( d = b -> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " d ) ) = ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " b ) ) ) |
| 25 | 24 | cbvmptv | |- ( d e. ~P dom a |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " d ) ) ) = ( b e. ~P dom a |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " b ) ) ) |
| 26 | 22 25 | eqtrdi | |- ( c = a -> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) = ( b e. ~P dom a |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " b ) ) ) ) |
| 27 | 26 | cbvmptv | |- ( c e. _V |-> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) ) = ( a e. _V |-> ( b e. ~P dom a |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( a " b ) ) ) ) |
| 28 | eqid | |- U. ( rec ( ( c e. _V |-> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) ) , (/) ) " _om ) = U. ( rec ( ( c e. _V |-> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) ) , (/) ) " _om ) |
|
| 29 | 17 27 28 | ackbij2 | |- U. ( rec ( ( c e. _V |-> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) ) , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om |
| 30 | fvex | |- ( R1 ` _om ) e. _V |
|
| 31 | 9 30 | eqeltrri | |- U. ( R1 " _om ) e. _V |
| 32 | 31 | f1oen | |- ( U. ( rec ( ( c e. _V |-> ( d e. ~P dom c |-> ( ( e e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. e ( { f } X. ~P f ) ) ) ` ( c " d ) ) ) ) , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om -> U. ( R1 " _om ) ~~ _om ) |
| 33 | 29 32 | ax-mp | |- U. ( R1 " _om ) ~~ _om |
| 34 | 9 33 | eqbrtri | |- ( R1 ` _om ) ~~ _om |