This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusaddf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusaddf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusaddf.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | ||
| qusaddf.z | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| qusaddf.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | ||
| qusaddf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | ||
| qusaddf.p | ⊢ · = ( +g ‘ 𝑅 ) | ||
| qusaddf.a | ⊢ ∙ = ( +g ‘ 𝑈 ) | ||
| Assertion | qusaddf | ⊢ ( 𝜑 → ∙ : ( ( 𝑉 / ∼ ) × ( 𝑉 / ∼ ) ) ⟶ ( 𝑉 / ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusaddf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusaddf.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 4 | qusaddf.z | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | qusaddf.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | |
| 6 | qusaddf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | |
| 7 | qusaddf.p | ⊢ · = ( +g ‘ 𝑅 ) | |
| 8 | qusaddf.a | ⊢ ∙ = ( +g ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 10 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 11 | 2 10 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 12 | erex | ⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) | |
| 13 | 3 11 12 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 14 | 1 2 9 13 4 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) ) |
| 15 | 1 2 9 13 4 | quslem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 16 | 14 2 15 4 7 8 | imasplusg | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) ‘ 𝑝 ) , ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) ‘ 𝑞 ) 〉 , ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) |
| 17 | 1 2 3 4 5 6 9 16 | qusaddflem | ⊢ ( 𝜑 → ∙ : ( ( 𝑉 / ∼ ) × ( 𝑉 / ∼ ) ) ⟶ ( 𝑉 / ∼ ) ) |