This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusaddf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusaddf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusaddf.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | ||
| qusaddf.z | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| qusaddf.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | ||
| qusaddf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | ||
| qusaddflem.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | ||
| qusaddflem.g | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) | ||
| Assertion | qusaddflem | ⊢ ( 𝜑 → ∙ : ( ( 𝑉 / ∼ ) × ( 𝑉 / ∼ ) ) ⟶ ( 𝑉 / ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusaddf.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusaddf.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 4 | qusaddf.z | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | qusaddf.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | |
| 6 | qusaddf.c | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) | |
| 7 | qusaddflem.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 8 | qusaddflem.g | ⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) | |
| 9 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 10 | 2 9 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 11 | erex | ⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) | |
| 12 | 3 10 11 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 13 | 1 2 7 12 4 | quslem | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 14 | 3 10 7 6 5 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 15 | 13 14 8 6 | imasaddflem | ⊢ ( 𝜑 → ∙ : ( ( 𝑉 / ∼ ) × ( 𝑉 / ∼ ) ) ⟶ ( 𝑉 / ∼ ) ) |