This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasplusg.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| imasplusg.a | ⊢ ✚ = ( +g ‘ 𝑈 ) | ||
| Assertion | imasplusg | ⊢ ( 𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasplusg.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 6 | imasplusg.a | ⊢ ✚ = ( +g ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) | |
| 10 | eqid | ⊢ ( ·𝑠 ‘ 𝑅 ) = ( ·𝑠 ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( ·𝑖 ‘ 𝑅 ) = ( ·𝑖 ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) | |
| 16 | eqidd | ⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } ) | |
| 17 | eqidd | ⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) ) | |
| 18 | eqidd | ⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } ) | |
| 19 | eqidd | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) = ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ) | |
| 20 | eqid | ⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) | |
| 21 | 1 2 3 4 13 20 | imasds | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑅 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
| 22 | eqidd | ⊢ ( 𝜑 → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) = ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) | |
| 23 | 1 2 5 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 3 4 | imasval | ⊢ ( 𝜑 → 𝑈 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) ) |
| 24 | eqid | ⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) | |
| 25 | 24 | imasvalstr | ⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) Struct 〈 1 , ; 1 2 〉 |
| 26 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 27 | snsstp2 | ⊢ { 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } | |
| 28 | ssun1 | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) | |
| 29 | 27 28 | sstri | ⊢ { 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) |
| 30 | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) | |
| 31 | 29 30 | sstri | ⊢ { 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } 〉 , 〈 ( .r ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 ( .r ‘ 𝑅 ) 𝑞 ) ) 〉 } 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑅 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 ( ·𝑠 ‘ 𝑅 ) 𝑞 ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝑝 ( ·𝑖 ‘ 𝑅 ) 𝑞 ) 〉 } 〉 } ) ∪ { 〈 ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) 〉 , 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑈 ) 〉 } ) |
| 32 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 33 | 2 32 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 34 | snex | ⊢ { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V | |
| 35 | 34 | rgenw | ⊢ ∀ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V |
| 36 | iunexg | ⊢ ( ( 𝑉 ∈ V ∧ ∀ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) → ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) | |
| 37 | 33 35 36 | sylancl | ⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) |
| 38 | 37 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) |
| 39 | iunexg | ⊢ ( ( 𝑉 ∈ V ∧ ∀ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) | |
| 40 | 33 38 39 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ∈ V ) |
| 41 | 23 25 26 31 40 6 | strfv3 | ⊢ ( 𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) 〉 } ) |