This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| qus0subg.s | ⊢ 𝑆 = { 0 } | ||
| qus0subg.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| qus0subg.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | ||
| qus0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | qus0subgbas | ⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝑈 ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | qus0subg.s | ⊢ 𝑆 = { 0 } | |
| 3 | qus0subg.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 4 | qus0subg.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | |
| 5 | qus0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 6 | df-qs | ⊢ ( 𝐵 / ∼ ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ } | |
| 7 | 4 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝑈 = ( 𝐺 /s ∼ ) ) |
| 8 | 5 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 9 | 3 | ovexi | ⊢ ∼ ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝐺 ∈ Grp → ∼ ∈ V ) |
| 11 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 12 | 7 8 10 11 | qusbas | ⊢ ( 𝐺 ∈ Grp → ( 𝐵 / ∼ ) = ( Base ‘ 𝑈 ) ) |
| 13 | 1 2 5 3 | eqg0subgecsn | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ = { 𝑥 } ) |
| 14 | 13 | eqeq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑢 = [ 𝑥 ] ∼ ↔ 𝑢 = { 𝑥 } ) ) |
| 15 | 14 | rexbidva | ⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ ↔ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) ) |
| 16 | 15 | abbidv | ⊢ ( 𝐺 ∈ Grp → { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = [ 𝑥 ] ∼ } = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
| 17 | 6 12 16 | 3eqtr3a | ⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝑈 ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |