This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qus0subg.0 | |- .0. = ( 0g ` G ) |
|
| qus0subg.s | |- S = { .0. } |
||
| qus0subg.e | |- .~ = ( G ~QG S ) |
||
| qus0subg.u | |- U = ( G /s .~ ) |
||
| qus0subg.b | |- B = ( Base ` G ) |
||
| Assertion | qus0subgbas | |- ( G e. Grp -> ( Base ` U ) = { u | E. x e. B u = { x } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus0subg.0 | |- .0. = ( 0g ` G ) |
|
| 2 | qus0subg.s | |- S = { .0. } |
|
| 3 | qus0subg.e | |- .~ = ( G ~QG S ) |
|
| 4 | qus0subg.u | |- U = ( G /s .~ ) |
|
| 5 | qus0subg.b | |- B = ( Base ` G ) |
|
| 6 | df-qs | |- ( B /. .~ ) = { u | E. x e. B u = [ x ] .~ } |
|
| 7 | 4 | a1i | |- ( G e. Grp -> U = ( G /s .~ ) ) |
| 8 | 5 | a1i | |- ( G e. Grp -> B = ( Base ` G ) ) |
| 9 | 3 | ovexi | |- .~ e. _V |
| 10 | 9 | a1i | |- ( G e. Grp -> .~ e. _V ) |
| 11 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 12 | 7 8 10 11 | qusbas | |- ( G e. Grp -> ( B /. .~ ) = ( Base ` U ) ) |
| 13 | 1 2 5 3 | eqg0subgecsn | |- ( ( G e. Grp /\ x e. B ) -> [ x ] .~ = { x } ) |
| 14 | 13 | eqeq2d | |- ( ( G e. Grp /\ x e. B ) -> ( u = [ x ] .~ <-> u = { x } ) ) |
| 15 | 14 | rexbidva | |- ( G e. Grp -> ( E. x e. B u = [ x ] .~ <-> E. x e. B u = { x } ) ) |
| 16 | 15 | abbidv | |- ( G e. Grp -> { u | E. x e. B u = [ x ] .~ } = { u | E. x e. B u = { x } } ) |
| 17 | 6 12 16 | 3eqtr3a | |- ( G e. Grp -> ( Base ` U ) = { u | E. x e. B u = { x } } ) |