This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient set is equal to the singleton of A when all elements are related and A is nonempty. (Contributed by SN, 8-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsalrel.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∼ 𝑦 ) | |
| qsalrel.2 | ⊢ ( 𝜑 → ∼ Er 𝐴 ) | ||
| qsalrel.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝐴 ) | ||
| Assertion | qsalrel | ⊢ ( 𝜑 → ( 𝐴 / ∼ ) = { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsalrel.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∼ 𝑦 ) | |
| 2 | qsalrel.2 | ⊢ ( 𝜑 → ∼ Er 𝐴 ) | |
| 3 | qsalrel.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝐴 ) | |
| 4 | dfqs2 | ⊢ ( 𝐴 / ∼ ) = ran ( 𝑎 ∈ 𝐴 ↦ [ 𝑎 ] ∼ ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∼ Er 𝐴 ) |
| 6 | 1 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∼ 𝑦 ↔ 𝑎 ∼ 𝑦 ) ) | |
| 10 | 9 | ralbidv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑎 ∼ 𝑦 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 = 𝑎 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑎 ∼ 𝑦 ) ) |
| 12 | 8 11 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑎 ∼ 𝑦 ) ) |
| 13 | breq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝑎 ∼ 𝑦 ↔ 𝑎 ∼ 𝑁 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝑁 ) → ( 𝑎 ∼ 𝑦 ↔ 𝑎 ∼ 𝑁 ) ) |
| 15 | 3 14 | rspcdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 𝑎 ∼ 𝑦 → 𝑎 ∼ 𝑁 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑎 ∼ 𝑦 → 𝑎 ∼ 𝑁 ) ) |
| 17 | 12 16 | syld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ∼ 𝑦 → 𝑎 ∼ 𝑁 ) ) |
| 18 | 7 17 | mpd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∼ 𝑁 ) |
| 19 | 5 18 | erthi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → [ 𝑎 ] ∼ = [ 𝑁 ] ∼ ) |
| 20 | 19 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ [ 𝑎 ] ∼ ) = ( 𝑎 ∈ 𝐴 ↦ [ 𝑁 ] ∼ ) ) |
| 21 | 20 | rneqd | ⊢ ( 𝜑 → ran ( 𝑎 ∈ 𝐴 ↦ [ 𝑎 ] ∼ ) = ran ( 𝑎 ∈ 𝐴 ↦ [ 𝑁 ] ∼ ) ) |
| 22 | eqid | ⊢ ( 𝑎 ∈ 𝐴 ↦ [ 𝑁 ] ∼ ) = ( 𝑎 ∈ 𝐴 ↦ [ 𝑁 ] ∼ ) | |
| 23 | 3 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 24 | 22 23 | rnmptc | ⊢ ( 𝜑 → ran ( 𝑎 ∈ 𝐴 ↦ [ 𝑁 ] ∼ ) = { [ 𝑁 ] ∼ } ) |
| 25 | 2 | ecss | ⊢ ( 𝜑 → [ 𝑁 ] ∼ ⊆ 𝐴 ) |
| 26 | 5 18 | ersym | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑁 ∼ 𝑎 ) |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑁 ∈ 𝐴 ) |
| 28 | elecg | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑁 ∈ 𝐴 ) → ( 𝑎 ∈ [ 𝑁 ] ∼ ↔ 𝑁 ∼ 𝑎 ) ) | |
| 29 | 8 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ∈ [ 𝑁 ] ∼ ↔ 𝑁 ∼ 𝑎 ) ) |
| 30 | 26 29 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ [ 𝑁 ] ∼ ) |
| 31 | 25 30 | eqelssd | ⊢ ( 𝜑 → [ 𝑁 ] ∼ = 𝐴 ) |
| 32 | 31 | sneqd | ⊢ ( 𝜑 → { [ 𝑁 ] ∼ } = { 𝐴 } ) |
| 33 | 21 24 32 | 3eqtrd | ⊢ ( 𝜑 → ran ( 𝑎 ∈ 𝐴 ↦ [ 𝑎 ] ∼ ) = { 𝐴 } ) |
| 34 | 4 33 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 / ∼ ) = { 𝐴 } ) |