This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient set is equal to the singleton of A when all elements are related and A is nonempty. (Contributed by SN, 8-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsalrel.1 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> x .~ y ) |
|
| qsalrel.2 | |- ( ph -> .~ Er A ) |
||
| qsalrel.3 | |- ( ph -> N e. A ) |
||
| Assertion | qsalrel | |- ( ph -> ( A /. .~ ) = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsalrel.1 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> x .~ y ) |
|
| 2 | qsalrel.2 | |- ( ph -> .~ Er A ) |
|
| 3 | qsalrel.3 | |- ( ph -> N e. A ) |
|
| 4 | dfqs2 | |- ( A /. .~ ) = ran ( a e. A |-> [ a ] .~ ) |
|
| 5 | 2 | adantr | |- ( ( ph /\ a e. A ) -> .~ Er A ) |
| 6 | 1 | ralrimivva | |- ( ph -> A. x e. A A. y e. A x .~ y ) |
| 7 | 6 | adantr | |- ( ( ph /\ a e. A ) -> A. x e. A A. y e. A x .~ y ) |
| 8 | simpr | |- ( ( ph /\ a e. A ) -> a e. A ) |
|
| 9 | breq1 | |- ( x = a -> ( x .~ y <-> a .~ y ) ) |
|
| 10 | 9 | ralbidv | |- ( x = a -> ( A. y e. A x .~ y <-> A. y e. A a .~ y ) ) |
| 11 | 10 | adantl | |- ( ( ( ph /\ a e. A ) /\ x = a ) -> ( A. y e. A x .~ y <-> A. y e. A a .~ y ) ) |
| 12 | 8 11 | rspcdv | |- ( ( ph /\ a e. A ) -> ( A. x e. A A. y e. A x .~ y -> A. y e. A a .~ y ) ) |
| 13 | breq2 | |- ( y = N -> ( a .~ y <-> a .~ N ) ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ y = N ) -> ( a .~ y <-> a .~ N ) ) |
| 15 | 3 14 | rspcdv | |- ( ph -> ( A. y e. A a .~ y -> a .~ N ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ a e. A ) -> ( A. y e. A a .~ y -> a .~ N ) ) |
| 17 | 12 16 | syld | |- ( ( ph /\ a e. A ) -> ( A. x e. A A. y e. A x .~ y -> a .~ N ) ) |
| 18 | 7 17 | mpd | |- ( ( ph /\ a e. A ) -> a .~ N ) |
| 19 | 5 18 | erthi | |- ( ( ph /\ a e. A ) -> [ a ] .~ = [ N ] .~ ) |
| 20 | 19 | mpteq2dva | |- ( ph -> ( a e. A |-> [ a ] .~ ) = ( a e. A |-> [ N ] .~ ) ) |
| 21 | 20 | rneqd | |- ( ph -> ran ( a e. A |-> [ a ] .~ ) = ran ( a e. A |-> [ N ] .~ ) ) |
| 22 | eqid | |- ( a e. A |-> [ N ] .~ ) = ( a e. A |-> [ N ] .~ ) |
|
| 23 | 3 | ne0d | |- ( ph -> A =/= (/) ) |
| 24 | 22 23 | rnmptc | |- ( ph -> ran ( a e. A |-> [ N ] .~ ) = { [ N ] .~ } ) |
| 25 | 2 | ecss | |- ( ph -> [ N ] .~ C_ A ) |
| 26 | 5 18 | ersym | |- ( ( ph /\ a e. A ) -> N .~ a ) |
| 27 | 3 | adantr | |- ( ( ph /\ a e. A ) -> N e. A ) |
| 28 | elecg | |- ( ( a e. A /\ N e. A ) -> ( a e. [ N ] .~ <-> N .~ a ) ) |
|
| 29 | 8 27 28 | syl2anc | |- ( ( ph /\ a e. A ) -> ( a e. [ N ] .~ <-> N .~ a ) ) |
| 30 | 26 29 | mpbird | |- ( ( ph /\ a e. A ) -> a e. [ N ] .~ ) |
| 31 | 25 30 | eqelssd | |- ( ph -> [ N ] .~ = A ) |
| 32 | 31 | sneqd | |- ( ph -> { [ N ] .~ } = { A } ) |
| 33 | 21 24 32 | 3eqtrd | |- ( ph -> ran ( a e. A |-> [ a ] .~ ) = { A } ) |
| 34 | 4 33 | eqtrid | |- ( ph -> ( A /. .~ ) = { A } ) |