This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 22-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qmulz | |- ( A e. QQ -> E. x e. NN ( A x. x ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( A e. QQ <-> E. y e. ZZ E. x e. NN A = ( y / x ) ) |
|
| 2 | rexcom | |- ( E. y e. ZZ E. x e. NN A = ( y / x ) <-> E. x e. NN E. y e. ZZ A = ( y / x ) ) |
|
| 3 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 4 | 3 | adantl | |- ( ( x e. NN /\ y e. ZZ ) -> y e. CC ) |
| 5 | nncn | |- ( x e. NN -> x e. CC ) |
|
| 6 | 5 | adantr | |- ( ( x e. NN /\ y e. ZZ ) -> x e. CC ) |
| 7 | nnne0 | |- ( x e. NN -> x =/= 0 ) |
|
| 8 | 7 | adantr | |- ( ( x e. NN /\ y e. ZZ ) -> x =/= 0 ) |
| 9 | 4 6 8 | divcan1d | |- ( ( x e. NN /\ y e. ZZ ) -> ( ( y / x ) x. x ) = y ) |
| 10 | simpr | |- ( ( x e. NN /\ y e. ZZ ) -> y e. ZZ ) |
|
| 11 | 9 10 | eqeltrd | |- ( ( x e. NN /\ y e. ZZ ) -> ( ( y / x ) x. x ) e. ZZ ) |
| 12 | oveq1 | |- ( A = ( y / x ) -> ( A x. x ) = ( ( y / x ) x. x ) ) |
|
| 13 | 12 | eleq1d | |- ( A = ( y / x ) -> ( ( A x. x ) e. ZZ <-> ( ( y / x ) x. x ) e. ZZ ) ) |
| 14 | 11 13 | syl5ibrcom | |- ( ( x e. NN /\ y e. ZZ ) -> ( A = ( y / x ) -> ( A x. x ) e. ZZ ) ) |
| 15 | 14 | rexlimdva | |- ( x e. NN -> ( E. y e. ZZ A = ( y / x ) -> ( A x. x ) e. ZZ ) ) |
| 16 | 15 | reximia | |- ( E. x e. NN E. y e. ZZ A = ( y / x ) -> E. x e. NN ( A x. x ) e. ZZ ) |
| 17 | 2 16 | sylbi | |- ( E. y e. ZZ E. x e. NN A = ( y / x ) -> E. x e. NN ( A x. x ) e. ZZ ) |
| 18 | 1 17 | sylbi | |- ( A e. QQ -> E. x e. NN ( A x. x ) e. ZZ ) |