This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for qextlt and qextle . (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qextltlem | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qbtwnxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 3 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐴 < 𝑥 ) | |
| 4 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 5 | qre | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) | |
| 6 | 5 | rexrd | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 8 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴 ) ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴 ) ) |
| 10 | 3 9 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ 𝑥 ≤ 𝐴 ) |
| 11 | xrltle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 < 𝐴 → 𝑥 ≤ 𝐴 ) ) | |
| 12 | 7 4 11 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 < 𝐴 → 𝑥 ≤ 𝐴 ) ) |
| 13 | 10 12 | mtod | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ 𝑥 < 𝐴 ) |
| 14 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 < 𝐵 ) | |
| 15 | 13 14 | 2thd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) |
| 16 | nbbn | ⊢ ( ( ¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ↔ ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) |
| 18 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 19 | 7 18 14 | xrltled | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 20 | 10 19 | 2thd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 21 | nbbn | ⊢ ( ( ¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ↔ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) | |
| 22 | 20 21 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 23 | 17 22 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 24 | 23 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |
| 25 | 24 | reximdva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |
| 26 | 2 25 | syld | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |