This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for qextlt and qextle . (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qextltlem | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qbtwnxr | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
|
| 2 | 1 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 3 | simprl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> A < x ) |
|
| 4 | simplll | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> A e. RR* ) |
|
| 5 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 6 | 5 | rexrd | |- ( x e. QQ -> x e. RR* ) |
| 7 | 6 | ad2antlr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x e. RR* ) |
| 8 | xrltnle | |- ( ( A e. RR* /\ x e. RR* ) -> ( A < x <-> -. x <_ A ) ) |
|
| 9 | 4 7 8 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( A < x <-> -. x <_ A ) ) |
| 10 | 3 9 | mpbid | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. x <_ A ) |
| 11 | xrltle | |- ( ( x e. RR* /\ A e. RR* ) -> ( x < A -> x <_ A ) ) |
|
| 12 | 7 4 11 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( x < A -> x <_ A ) ) |
| 13 | 10 12 | mtod | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. x < A ) |
| 14 | simprr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x < B ) |
|
| 15 | 13 14 | 2thd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. x < A <-> x < B ) ) |
| 16 | nbbn | |- ( ( -. x < A <-> x < B ) <-> -. ( x < A <-> x < B ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. ( x < A <-> x < B ) ) |
| 18 | simpllr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> B e. RR* ) |
|
| 19 | 7 18 14 | xrltled | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> x <_ B ) |
| 20 | 10 19 | 2thd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. x <_ A <-> x <_ B ) ) |
| 21 | nbbn | |- ( ( -. x <_ A <-> x <_ B ) <-> -. ( x <_ A <-> x <_ B ) ) |
|
| 22 | 20 21 | sylib | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> -. ( x <_ A <-> x <_ B ) ) |
| 23 | 17 22 | jca | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) /\ ( A < x /\ x < B ) ) -> ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) |
| 24 | 23 | ex | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. QQ ) -> ( ( A < x /\ x < B ) -> ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |
| 25 | 24 | reximdva | |- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. QQ ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |
| 26 | 2 25 | syld | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( -. ( x < A <-> x < B ) /\ -. ( x <_ A <-> x <_ B ) ) ) ) |